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ABSTRACT

Periodic solutions of the equation

Z + Z 4+ (T -R+Rz3®z + Tz = 0

are studied numerically and, for large R and T , analyti-
cally. The periodic solutions are unstable in a small strip

of the (R,T) plane whose boundaries are determined.



8 1. Introduction

In a recent paper (MOORE and SPIEGEL, 1966, henceforth
referred to as MS) a thermo-mechanical oscillator was con-
structed with the idea of studying, in a simplified system,
the properties of non-linear overstability. A small buoyant
element was allowed to move in a temperature-stratified fluid
under the action of a linear restoring force. The buoyancy
of the element was made to depend in a linear way on its
temperature which in turn depended on the temperature of the
surrounding fluid through Newton's law of cooling. The fact
that a finite time is needed for temperature adjustment is

essential to the functioning of the model.

This cooling time provides a suitable time scale and
if time is measured in these units and if a temperature
stratification is chosen so that the surrounding fluid is
unstable for |z| < 1 and stable for |z|] > 1 (a cubic
law is the simplest analytic function satisfying these re-
quirements and this was used) the equation satisfied by the

position z(t) of the small element is

a 2
da°z 4, 4%z (T - R+ Rz?) 92 4 7q, = 0. (1.1)
dt3 dt? dat



R -and T are large when the thermal dissipation involved
in the cooling law is small. They can be thought of as the
square of the ratio of the cooling time to the characteristic
convective time in the absence of the spring and the square
of the ratio of the cooling time to the period of free oscil-

lations under the action of the spring alone.

Since energy is available to the small element only for
jz] <1 we would expect the motions to be bounded, whatever
the initial conditions. Moreover, since the system is dis-
sipative we would expect the system to enter a limit cycle
for large values of t . 1In MS equation (l.l) was studied
by time integration and it was found that, while a limit
cycle was usually entered, there was a narrow strip of the
(R,T) plane in which solutions were not asymptotically
periodic. This strip is shown in Figure 1. The purpose
of the present paper is to explain the existence of this

strip.

In MS it was suggested that the aperiodicity was due
to the fact that when R and T lay in the aperiodicity
strip the corresponding periodic solutions of (1.1l) passed

close to the singular point of (l.1l) in its phase




(z, 4z 4%z
at = dat?

space, enabling small numerical errors to

push the phase point from one periodic solution to another.
(Though the vacillation is induced by numerical errors, the
same effect is produced on the actual physical system by
small random disturbances. Thus the vacillation is a real
physical effect. A rigid simple pendulum with just enough
energy to make complete revolutions and subject to small
random forces would display a similar vacillation.) Evidence
was presented to support this theory of the origin of the
vacillation and in particular a few periodic solutions of

the required type were discovered using a relaxation proce-

dure.

In this paper a systematic search for the periodic so-
lutions is made. In § 2. an analytic approximation to the
periodic solutions of (l.1l) is developed which is valid when
R and T are Qery large. In this case the motion is ap-

proximately adiabatic and satisfies the energy equation

(1.2)

"
m

2
FI7T R
za(dt) 702 +3® + B

where
5 = 1 - T/R (1.3)

and where E is the energy and B the buoyancy of the
-3-




element relative to the fluid at z = 0 -- both are con-
served in the absence of dissipation. To each E and B
there corresponds a unique energy curve and to each such
energy curve (apart from a single critical curve) corre-
sponds a periodic solution. This degeneracy in the adia-
batic theory can be removed in a familiar manner by con-
sidering the average effect of the dissipation over the
periodic solutions supplied by (1.2). This is valid since
there are many oscillations per cooling time if R >> 1.

If we do this we find (§ 2a.) that

dE - F(E,B,s)
dat
(1.4)
dB - G(E,B,3)
at

where F and G are averages of the dissipative forces
over the cnecrgy curves defined by (1.2). If F and G
both vanish for particular values E, and B, then integra-
tion of (1.2) with E, and B, inserted will yield an ap-
proximation to the periodic solution of (1.1). This approxi-
mate theory shows that a pair of distinct periodic solutions
exists which pass vanishingly close to the origin in the

phase space of (1.1) as & - 2 from below. These solutions

have a characteristic 'spiky' appearance with long flat

—4-




1 - — — -~
portions of small slope between the spikes. For 8=

INTH)

they disappear. This is in good agreement with the time

integrations which showed that, to very good approximation,

the solutions were asymptotically periodic to the left of the
3

line & ~ 5 1in the (R,T) plane and had aperiodicity of

the "jumping" type just to the right.

Numerical solutions of (1l.1l) at very large values of
R and T , such that (R,T) 1is in the aperiodicity strip
have revealed that near the right hand boundary the aperi-
odicity takes on a rather different form. Rather than a
jumping between periodic solutions with different shapes
and periods one has a continuous but aperiodic modulation of
a single oscillation (see Figures 2 and 3). Characteristic
of the modulation is a gradual decrease in the amplitude of
excursions on one side of z =0 followed by a sudden jump
to a nearly symmetric motion. The time between the sudden
jumps is apparently random (at least we can determine no
rules from inspection of about twenty time integrations in
this region of the (R,T) plane) and it had no systematic

dependence on R .

An explanation of this effect in terms of the (E,B)

plane is proposed in § 2d. The singular points of (1.4)

~5-



turn out to be all unstable if .75 > § > .62 and the

point (E,B) traverses a limit cycle in the (E,B) plane.
Thus instead of an oscillation of constant amplitude one
gets a modulation of the amplitude (and shape) of the oscil-
lation as (E,B) goes round its limit cycle, which is tra-
versed in O(l) cooling times. The sudden jump is associ-
ated with the singular energy curve of the family (1.2)
which separates energy curves of two types. It is conjec-
tured that the aperiodicity of the modulation is also as-

sociated with the singular curve.

At finite R and T we can only hope to find the
periodic solutions of (l1.l1l) numerically. However, if R
and T 1lie in the aperiodicity strip these periodic solu-

tions are unstable and will not emerge from a time integration.

In § 3a. we describe a relaxation method of finding the
periodic solutions which works even when the solution being
sought is unstable. We guess the shape of the solution
and its period and improve the guesses by substituting them
in the equation and calculating corrections. If we were pre-
pared to solve non-linear algebraic equations for the values
of the corrections at the grid points into which we divide

the period (normalized to unity, so that the physical period

-6~




enters the equation as an eigenvsluc) we could find the

corrections in one step. Instead we assume formally that
the corrections are small and solve the resulting linear
equations. The process is repeated until the corrections

fall below some pre-assigned value.

The solutions found in this way agree well with the
results of time integrations in the stable region of the
(R,T) plane and with the asymptotic theory for R - ©O.

In particular periodic solutions passing close to the origin

B[]

of the phase space of (1.1l) are found near the line § =

In Floquet theory one studies the stability of peri-
odic solutions of a non-linear ordinary differential equa-
tion by finding out if small perturbations to the solution
grow or decay. The similarity to our numerical procedure
is obvious and our procedure yields the Floquet multipliers
associated with the periodic solution as well as the peri-
odic solution itself. It is found that the periodic solu-
tions lose stability as a critical curve in the (R,T)
plane is crossed from right to left and this curve is in
good agreement with the right-hand boundary of the aperio-

dicity strip.



§ 2. The Method of Averaging

2a. The averaged equations.

In this section we take up the problem of finding ap-
proximations to the periodic solutions of (l.1l) in the case

where R and T are large and R = 0(T).

We recall from the physical nature of the system de-
scribed by (l.1l) that infinite R and T correspond to
no thermal dissipation, so that in this case the system
will execute oscillations of constant amplitude. We shall
call these adiabatic oscillations. If R and T are

%

large but finite the dynamical time scale O(R °) which
characterizes the oscillations is very much shorter than the
cooling time O0(l) which characterizes the dissipative
process. Thus during one oscillation the dissipation can
produce only a small effect and we can anticipate that the
amplitude, degree of asymmetry and phase of the oscillations
will change only very gradually. Consequently one can al-

low for the effect of the dissipative terms by calculating

their average over one oscillation (BOGOLIUBOV and MITRO-

POLSKY 1961, p. 387 ff.)
Let us introduce a new dimensionless time T = R

-8-




so that T measures time in dynamical units. Then (1l.1)

can be written

d’z dz _ _lydlz T
SE-G-agE = -RU(4m v, (2.1)

The small dissipative terms are on the right and the adia-

batic motions thus satisfy

dz

3
22 -(6-2%) g5 =0. (2.2)

dT?

This equation was discussed in MS. If we integrate it twice

we find that

2
dz | 2 A o4 = .
$(35) - 782 5" +b2 = E (23

where E and B are constants of integration. Physically,

E 1is the energy and B the buoyancy defect relative to

the fluid at z = 0 of the oscillating element. The curves

of constant E in the (Z,-%%%) phase plane are closed

for all B , so that except for a critical curve which enters

a saddle point, every curve, and hence every pair of values

(E,B) , corresponds to a periodic solution of (2.2).

Thus for any value of § there is a doubly infinite

family of adiabatic oscillations and it is up to the dis-



sipative process to decide which members of this family

neither gain or lose energy and buoyancy over one cycle.
These particular adiabatic oscillations will be our approxi-
mation to the periodic solutions of (l.1l) for the given

value of § .

We can integrate (2.3) again in terms of Jacobi ellip-
tic functions but let us write the solution of (2.3) in the

form

z = z,(1+8,E,B,%) (2.4)

where the new constant of integration & 1is a phase, and
where the subscript ',' is to emphasize that z,(1) 1is a

A

solution of the adiabatic approximation (2.3).

We have suggested that for large R the effect of the
dissipation will be to slowly change the shape of the adi-
abatic oscillations. To allow for this we regard § , E
and B not as constants but as varying only over many
(actually O(R%) ) cycles and we try to choose them so
that (2.1) is satisfied in an average sense. As a conse-

gquence of the time dependence of the constants,

0Z _ 0Z, 2%4 5 224 ¢ 2ZA
ST “oF +t56 0 *3EE t 550D
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where a dot denotes ii-. Now if we insist that the last
dr

three terms vanish for all +t we can ensure that

.Y CEN

———

3T — 7

and by a similar restriction on the second derivatives we

can ensure that

2 a
aZ_GIA

2T T aT?
and so
°z2  _ 3%z 2 24 6+ D2 g, 2324 B
2T3 — 373 3T a’rlas 2T 3B
Thus we have
azA' OZA 1 OZA h
+ + B =
06 e oE E 20 0

} (2.5)

a Za a Za o azfA .

a'rae6 ¥ afraEE 2ToB B =0

D3£Aé ZAE aZAB R-/z 3ZA+I2
2T%e

bT’JE afr‘ae

-11~




where the final equation of the set is derived by insist-

ing that =z(t) satisfies the full equation (2.1).

The second and third derivatives of 2z, in (2.5) can
easily be expressed in terms of the first derivatives by
using (2.3). For example, if we differentiate (2.3) with

respect to E we find

2%z, oA DE,

_ 3
3ToE a1 - | T 7€

(-6024 + 72, +B)

and using this and similar easily derived relations we can

show that the solution of (2.5) is

Yor _ T oz 0Z, 3fA) 0 ZA

R76 = ‘(ﬁzA’“afr?)(*A_aE *38// 3T A

R™E - -Z,B + 2 - %—ZAA > (2.6)
V24 _ ) 53

R B_ —B + ZA —'3. ZA J

So far the analysis is exact and we could in principle
solve these equations for 8 , E , B using the explicit
solution (2.4). Needless to say, this is impossible and
we replace the right-hand sides in (2.6) by their average

values over one oscillation. Let us denote this average

~12-




by an overbar. Now

d'z 3

and for a periodic solution

dzi'A
arz -0

so that, on taking the averages of the right-hand sides of

(2.6), we can simplify the equations to

R'/zé = -(-;-— zZ, +%:%)(ZA g::A ‘ 2354)/ g:‘A

3

R"l—f= -z,B +2,° -;i;zf' L (2.7)
Y T —
RB==%Z,.

R A y

These equations are considerably simpler in that there is
no explicit time dependence and a solution is feasible.

In particular we observe that since the average value of
a power of =z, 1is independent of 8 , the last two equa-

tions suffice to determine E(7) and B(Tt) . Thus the

phase drops out of the problem (a reflection of the fact

-13-



that our system is unforced) and we are left with the pair of

equations

s . N

R“E = F(€,B,s)

~ (2.8)

szE5:= G}(E}E})S} )
where

F(E,B,s) =-z,B+ zAz "% qu (2.9)
and

G(EB,58)

-EE; (2.10)

We are interested in values E, and B, which make

F(E,,B, 8)=0
and L(2.11)

G(E,B,8)=0 . )

We can solve (2.11) directly, but it is instructive to note

that solutions of (2.11) are singular points of (2.8) in
the (E,B) plane. This suggests that the structure of the
solutions of (2.8) in the (E,B) plane will be of interest.

For example, if the singular point (E,,B,) 1is unstable we

-14-~-




should not expect to find the corresponding adiaba

-+

ic oscil-

lation in a time integration of (l1.1). The idea of discuss-
ing the nature of periodic solutions of a differential equa-
tion in terms of the phase plane of the adiabatic constants

is due to Andronow and Witt (STOKER 1950, p. 153), who ex-

amined second-order forced systems.

Suppose that we are close to a singular point so that

o~

E=E,+E
B=B,+8

then approximately

o)~ (2.12)

and the nature of the singular point is decided by the

values of the four partial derivatives, unless the deter-

minant

(o)

o) (o) . (o}
Fe Go —Fg G¢ =0 (2.13)

~15-




(STOKER 1950, p. 44). When (2.13) is satisfied there is
another solution of (2.8) near (E,,B,) so that we have a
bifurcation. (The superscript means that the partial deriva-

tives are evaluated at (E,,B,) ).

The discussion of the structure of the (E,B) plane
is greatly facilitated by the introduction of a generating
function whose existence was pointed out to us by Whitham

(1966 Private communication). Let

H(E,B, &) = §i: dT = § Z,d? (2.14)

where the integral is taken around the energy curve defined
by E and B . Clearly H(E,B,8) is just the area under
the energy curve. Whitham shows that F and G can be
expressed in terms of H and its derivatives with respect

to E and B and a short calculation gives
1 0-8) ], oH oH _(a=48) i) )
F(EBS) =-4 2 {up 28 4328 - (3248) ]

a
an >~ (2.15)

G(t,B8) = -4 2%
P38 , y

~-16-




is the period of the adiabatic oscillation. From (2.15) and

(2.11)

o _ T
R

1
Pag~

z, (2.17)

The system of equations (2.11) has one trivial solution
which we can dispose of before proceeding. We can verify

analytically that

while

H(0,0) 1is finite.

Thus E =0 and B =0 is a solution of (2.11) for all == .,
The corresponding energy curve is the critical figure of

eight curve entering the saddle point (0,0) in the

<?, %% > plane, so that the only periodic solution with

-17-~




E=0 and B=0 is z, = 0 , that is, no motion at alll

This corresponds to the position of unstable equilibrium

at z = 0 for the original equation (1.1).

We next prove that (2.11) has non-trivial solutions

only when 6§ < 2 . Clearly H » 0 and, because the energy

curves increase in size as E 1s increased, 3H 5 g
dE

an energy curve with E = 0 passes through the origin in

. Now

the <?, %& > plane. Thus an energy curve with E < O

T
is either entirely in the region 2z > 0 or entirely in the
region z <0 . 1In either case 2z, # 0 so that in view

of (2.17)

Q
-

o
<<

Thus solutions are possible only if E 2 0 and the condi-
tion for a non-trivial solution to be possible follows at

once from the form of F given by (2.15).

We stress that we have not proved that periodic solu-
tions of (l1.1) are impossible at large R and T if 5§ > §
only that, in this range, the periodic solutions are not
approximated by periodic solutions of (2.3). This is con-

firmed by the time integrations, since for § > % we found

that the equation had periodic solutions, but that these

-18-
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. . .
ma and minims per period, whereas

periodic solutions of (2.3) have just one maximum and one

minimum per period.

A further transformation is useful. Let

z = §°s ,

E*x = E/§ , (2.19)
and

B* = B/é% .
Then

32 & ® X 'Y \ A Y2
H= 2vZ 8" | (E°-B"s +3s - % ") ds (2.20)
sﬂ

where s, and s, correspond to the points in which the
energy curve cuts the =z axis. We note that H depends on
5 only through the factor & 2 . Thus the curve [ in the
(E*,B*) plane on which B* = 0 1s independent of & ,

so that in view of (2.17) G and Z vanish at every point

A
of this curve. 1In general F will be non zero except at
a finite number of points of T and as § changes these

points, which are the singular points of (2.8) in the (E*,B*)

plane will traverse I (Figure 7).
The symmetry of H with respect to B* shows that

-19-



oH

oB¥*

O on B* = 0 (E* >o0)" (2.21)

so that one branch of T 1is the positive E* axis. Indeed
it is obvious that =z, vanishes on any symmetric energy
curve -- physically, the dissipation does not destroy the
symmetry of an initially symmetric motion. These symmetric
oscillations are simplest to discuss and we consider them

in detail in 8 2b. and 8 2c. We return to the general case
in 8 2d., where we find that T has a branch on which

B* £ 0 , giving rise to asymmetric oscillations.

2b. The symmetric oscillations

If B* = 0 the energy curves are symmetric about the

dz  axis. The critical curve now passes through the origin
dr

and corresponds to E* = 0 ; for E* > 0 the energy curves

have a single symmetric branch (Figure 4a).

We now easily see that

Se
H | 2 2\ (2, ¢ 2
TS S VACEE [GENIPT

and

+ .
If E* < 0 the energy curve is entirely above or below the

2 axis and %%* # 0, H(E*,B*) is not differentiable at (0,0).

-20-




fs"

i _ ds
ZVIS% oEF “—j 2= ) (5T + 5,)

where N
SP=3 [+ (1 %E")"]

and | >  (2.22)
.= 3[(1+4E)2 1] . )

The integrals are easily evaluated (Byrd and Friedman 1954,

p. 45) and we find that the equation

toH _ 3-4¢6
4E 85“_ l_é. H

which will determine the value of E* corresponding to a

steady oscillation is equivalent to

(' :LlpEl;Q)'/l = .:"8 {('*g'E) +t 2= ﬁ((i))} (2.23)
3

where

2 o2
=L+ (12687 (2.24)

and where, in the standard notation, E(k) and K(k) are

complete elliptic integrals. A rather more convenient form

~21-



may be obtained by applying the imaginary modulus transfor-

mation to E and K and after some manipulation we find

A
I+(1+3EY)

2
I o = 4
Ls(+4e%) +1-8=(1-%28) § (2.25)
3 ( X] ) ( 3 ) ,"(|*‘§"E*)-.Il
where
V2 )
S (I + w? sin?6)"2de
d?(cu)'z %& \
jo (1 + w?smte)®do
Clearly as w increases from O to ©00, § increases mono-

tonically from 1 to 00, so that as E* increases from 0 to
00 , the right-hand side of (2.25) decreases monotonically
from @ to 1 - 4/35 (we assume O < § < 3/4) whereas the
left-hand side increases monotonically from 1 - 2/35 to
00 . Thus there is a unique E* = Eg(é) for which (2.25)
is satisfied and the function E:(é) is easily found nu-
merically. Once E:(ﬁ) is determined, s, and s, can

be found in terms of & from their definitions (2.22) and

the oscillation is given by

y .
2, = B5"'s, sn (—ii}‘—_l—'-r-: —‘f‘-)

-22-




and its period P.,. by

7
__4VESs " $
Psvn - V saz N S: K(\ 75.2 . S=zl)

P.yw 1is shown as a function of § in Figure 5 and we

[ ]

note that it increases rapidly as § approaches the criti-
cal value 3/4. This is because as 4§ - 3/4 - , EX(8) -0 + ,
so that the energy curve is tending to merge with the figure-
of~-eight curve which has infinite period. In fact it can be

shown by expanding for small E* that

!
P ~ & o8 |3 5ym| * O

as & — 3/4 - .

The form of the oscillations for 8§ = 0.748 1is shown
in Figure 6. The flat portion of small slope which is de-
veloped when & 1is near the critical value is due to the

slow motion of the particle near the saddle point (0,0)

dz
<?.' E—L plane. This corresponds to a close approach
T
.. dz d°2z . .
to the origin the phase space < , —, —= of the origi-
dt dt*®

nal equation (1l.1).

The above analysis is restricted to the case R > T

-23-



for which § >0 . If 8 < 0 very similar analysis can
be given and it appears that there is again a unique sym-

metric solution.

The time integrations showed that there was a stable
symmetric solution only when § < .54 , approximately. This

suggests that the symmetric solution is unstable when
54 < 5 < .75

This is confirmed in § 2c. The time integrations showed a

stable asymmetric oscillation when § was slightly greater

than .54. We consider this in 9 2d.

2c. The stability of the symmetric solution.

We have seen that a symmetric solution exists in the
range -00 < § < 3/4. 1In this section we discuss its sta-
bility by examining the nature of the singular point (E:,O)
where Eg(é) is the solution of the transcendental equa-

tion (2.25).
It follows from the symmetry of F with respect to B

that
@ Fe (E,0,8) = O, (2.26)

so that (2.12) assume the form

-24-




(57 8
”~
S

T = Ge‘°,~ (o)—ﬁ

E + G,

and it follows from STOKER 1950, p. 44, that the point

(EO,O) is

I) a stable node if

II) an unstable node if

)]
Fz(o GB(o) >0 FE(o) + Ga(” >0

III) a saddle point if
0 (o
F ¢, <o

Now it can be shown from the results of § 2b. that

F. (E.(5),0,8) <0 - (2.27)

Thus case II cannot occur and we have a stable node if

GB(‘" < 0 and a saddle point of GB“’) >0 . If GBW) =0

there will be a bifurcation.

We cannot calculate G, without considering asymmetric

~25-



solutions. However, since the departure from symmetry is
small, we can use a perturbation method. Thus to calculate

the function G, (E,,0,8) we write
z = z,(r + 8,E,(58),0,8) +y . (2.28)

and substitute in (2.3), retaining only terms linear in vy .

Thus we find

y - y(2,/2z,) = - B(z,/z,)

whose solution is

y = - Bz, J‘(zA/éf)dt + Dz, ,

where D 1is a constant of integration. However the value
of D does not alter the average values involved in the
calculation of G, and we set it equal to zero in subsequent

work.

Substituting the explicit form of 2z, we find, after

some algebra, that

2 2 v .

It is now a straightforward matter to calculate ¥ and since

-26-




£ mevua crmemanmee s ma— Lo

BG,? = LIy
R
we find that
G- LT So' 6 _ (2s'- 12)8 (2.30)
8 R& (s.r+5,2)? |s,? g-128

Clearly the sign of G,(® is decided by the sign of the
qguantity in the square bracket in (2.30) and substituting

for s, its definition (2.22) we have

(9-126)

B S

(0)
> - " 4
G < 0 if [ () § 4
From the numerical solution of the transcendental equation

(2.25) which defines E*(s5) we find

G, (E,08)%0 ir §3 .56/

b d

and we conclude that the symmetric solution is stable only

1f 5 < .561---

-27-



This is in good agreement with the time integrations of

(1.1) for large R .

The critical value of § corresponds to a bifurcation.
In the next section we discuss the structure of the (E*,B%*)
plane as a function of § and we show that a stable asym-
metric solution bifurcates from the symmetric solution at
the point corresponding to the critical value. This is also

in agreement with the results of the time integrations.

2d. The structure of the (E*,B*) plane

We have seen that (2.11) have a symmetric solution for
5§ < 3/4 . To complete our discussion we must examine the
possibility of solutions with B* # 0 . 1In view of the
symmetry of the (E*,B*) plane with respect to B* we

need consider only positive B* .,

The energy curves (Figure 4) are

2
& »*
(5 + g5t -Ls" v ps-E (2.31)

and we must first discuss how these energy curves depend
on E* and B* ., The positions of equilibria satisfy the
cubic

-28-=




so that there are three positions of equilibrium if

O < B* < 2/3 and one if B* > 2/3 ., Moreover in the first
case the central position is unstable and the outer posi-
tions stable whereas in the second case the sole equilib-

rium position is stable (these statements are proved in MS).
Thus if B* > 2/3 the energy curves are closed ovals, which
increase in size as E* 1increases from the value E*(se)
appropriate to the position of equilibrium sg . If B* < 2/3
the situation is more complicated. Let so” sJf?sc'” be the

positions of equilibrium where

Se < Se < Se
so that so¢” and s/ are the stable positions. When
B* = 0 o _ \/— (2) _ 3) _ J" *
= Se = = V¥3 , sg = 0 and sg =+ 3 . As B
increases se“) and se(” decrease and se‘l) increases

until when B* = 2/3 se‘z) and se‘s) merge at the value

1 while Se(u - -2 ., In Figure 7 we sketch the curves
E*(se‘n) (and its continuation E*(sg) ), marked CD ,
E*(se‘”) , marked CA , and E*(se“)) marked OA . Suppose

we fix B* < 2/3 and increase E* from E*(se“)) so that

we move along a line parallel to the E* axis. The energy curve
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N . . . ] .
consists first of a single oval surrounding se‘) which
increases in size as E* increases. After we cross CA

the energy curve has two branches, one surrounding Se(”
and one surrounding se(a). As E* increases both ovals
grow until on the curve OA they merge and enter the un-
stable point se(z). The energy curve is now a single fig-
ure-of-eight curve and the motions are non-periodic. This
curve is called the separatrix. When E* increases still

further, the energy curve is a single closed curve surround-

ing the separatrix.

In short, we have a double branched energy curve in
the crescent shaped region C A O and a single branched
energy curve everywhere else to the right of CD . The arc

OA corresponds to the separatrix.

When the energy curve is double branchzd, the branch
surrounding se(3> is entirely in the region s > 0 so
that clearly Z, # 0 on this branch. Thus when the curve

()]

is double branched the branch surrounding sg is the

branch on which H is calculated.

The next step in the discussion is to determine the
curve T on which B3H/3B* = 0 . We have already seen that
I' has a branch B* = 0 corresponding to symmetric oscil-

lations. When B* > 0 solutions are sought numerically,
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with Lhe result
of T ©bifurcates from B* =0 at the point Q (which was
already located in 8 2c.) and returns to the symmetric branch
at O , crossing CA at the point P . The dotted portion
of T 1s only inferred since, owing to the proximity of T
to the critical curve OA corresponding to the separatrix,
the numerical work becomes very difficult. Fortunately, on
the curve CA , 3H/3B* can be expressed in terms of ele-
_mentary functions and the point P located exactly, proVid—
ing a check on the numerical calculations. The closeness of

" to OA 1is shown by the fact that A has coordinates

(L/4, 2/3) whereas P has coordinates (.24, .6572 ...)

Near O an approximate analytic treatment becomes pos-—
sible and rather lengthy calculations (Appendix A) show that

in the sector AOB*

3y _ Y2 [mw * ) %
0¥ = 4v6 87" (4 - B log N ToT +0(B") (2.33)

whereas OA itself is
B*® = 2E* (2.34)

so that AH/3B* vanishes on the curve

-31~



2 -

The proximity of the curves I and OA 1is clear from this

formula.

Once I 1is determined the point on T at which

*»2H _ 3-48
4E AE* ~ |- ¢ H

can be found. The arrows on Figure 7 show the direction 5
increasing. The bifurcation point Q is, as already seen
in 8 2d., & = .561 , the point P is § = 5/8 and at O ,
5 = 3/4 . The period P,,, of the asymmetric oscillations
increases rapidly as & 1increases (Figure 5); the approxi-

mate solution given in Appendix A shows that
2
Pysw ~ mIE/02(3-45) ] (2.36)

in contrast to the logarithmic behavior of P, , .

For & just smaller than 3/4 the energy curve is just
inside the lower loop of the separatrix. Consequently the
phase point spends most of each period near the point se‘z),
traversing the rest of the energy curve in a time of O0(1l) .

As a result the oscillations have a spiked appearance, with
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long flat portions between the spikes. Thus the asymmetric
solutions also correspond to a close approach to the point

(0,0,0) 4in the (z,z,zZ) phase space of (1.1) when 5 - 3/4 -

The nature of the singular point (E:,B:) was also de-
termined. On E*Q , the singular point is a stable node and
on QO , it is a saddle point, so that stable symmetric oscil-
lations are possible only if § < .561 . On QPO , it is at
first a stable node, then a stable spiral point and then at
R , where § = .62 , it becomes an unstable spiral. Thus
for .561 < § < .62 stable asymmetric solutions are pos-
sible. In Figure 8a we show the result of an actual time
integration when § = 0.6 . The point (E*,B*) is spiral-

ling into a stable spiral point as it should.

When § > .62 all the singular points of the system
(2.8) are unstable. This means that there are no possible
stable oscillations in this case. If we integrate (2.8)
in time E* and B* will not tend to a fixed point as
t - 00 and it is plausible to suppose that there will be
a limit cycle. This limit cycle cannot surround the saddle
point on 0OQ , so it must surround either the unstable
spiral on OR or the point O 1itself, which, as we saw

in 8§ 2a. is always a singular point of (2.8).
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If (E*,B*) is describing a limit cycle in the (E*,B%*)
plane the oscillation corresponding to E* and B* will
undergo a periodic modulation of amplitude and shape. The
period will be O0(l) cooling times and will depend only
on § . Such periodic modulations of a fundamental peri-
odic solution have been observed for forced motion of a
system of two degrees of freedom (Hayashi 1964, p. 309).
What is novel in our system 1is

a) the sudden jump in amplitude

b) the irregular nature of the modulation.

The sudden jump is reasonably simple to explain. Sup-
pose that when the limit cycle is surrounding the unstable
spiral point on the asymmetric branch of T (that is, a point
below R ) its lower portion crosses OA . If its lower
portion crosses OA it is easy to prove that it does so
from left to right. Now crossing OA 1in this direction means
going from the crescent shaped region in which the energy
curve has two distinct branches to the region where it sur-
rounds the separatrix. Thus as (E*,B¥) crosses OA oOn
its limit cycle the corresponding energy curve jumps from
an oval just inside the larger portion of the separatrix to

a dimpled curve surrounding the whole separatrix (Figure 4b).
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Thus the amplitude and shape of the oscillation will change
in just the manner observed in the time integrations. In
particular the phenomenon will not occur for § < .62 ,
since the asymmetric solution is then stable, as we have
already seen. This is in good agreement with the results

of the time integrations.

We have not been able to prove that the limit cycle
crosses OA . Instead we have verified the conjecture by
time integration of (2.8). The results for § = .625 are
shown in Figure 8b. The solution curve appears to be ap-

proaching a limit cycle of the conjectured form.

For § > .7 the limit cycle still crosses OA , but
surrounds the point O , being symmetric about the E* axis.
This presumably reflects a change in character of the singu-
lar point as it moves along I towards O with increasing
8 . However we have not been able to compute T in this

region, so this remains a conjecture.

Finally, we consider the irregular nature of the oscil-
lation. Suppose that a solution curve of (2.8) crosses OA .
On that part of the solution curve near the crossing point
the energy curve corresponding to (E*,B*) is very close to
the separatrix. Thus small changes in E* and B* can

make a large change in H (recall that <H and 2H are
QE* aB*
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infinite on OA ). Thus (2.8) is very sensitive to errors

in E* and B* and solution curves which start at neigh-
boring points on the left of OA can widely diverge to the
right of OA . Suppose we start numerical integration at a
point on the limit cycle. After crossing OA the solution
curve will be pushed off the limit cycle by the magnified

errors. Subsequently it will spiral back toward the limit
cycle. Thus it will again encounter OA and suffer a sec-
ond random deflection. This process will repeat itself in-
definitely so that the solution curve will never coincide

with the limit cycle.

This does not conflict with the capture property of
stable limit cycles since this depends essentially on the
fact that there is a unique solution curve through every
point of phase space. The magnified errors can be thought
of as random external forcing functions acting on the system
(2.8) in a narrow region surrounding OA and in this region

there can be many solution curves through any point.

The irregular nature of the solution curve was verified

by long time integrations of (2.8).

This explanation of the aperiodicity of the modulation

depends on the existence of an unstable spiral singular point

-36-




of (2.8). As we have seen the asymmetric singular point
goes unstable at & = .62. This 1s in good agreement with
the right-hand boundary of the aperiodicity strip found by

time integration.

8§ 3. Periodic Solutions and the Aperiodic Range

3a. The periodic solutions for finite R and T.

In the preceding sections it was seen that for very
large values of R and T there can exist symmetric periodic
solutions of (1.1) so long as & < .75. These symmetric
solutions are stable only in the range & < .561 and above
this critical value an asymmetric solution exists, which
itself is stable only in the range .56l < & < .62. This
asymptotic theory thus predicts that in the range .62 < 5 < .75
there will be both symmetric and asymmetric solutions, but
that neither type will be stable.

It is to be expected that the asymptotic theory will
be approximately valid at large but finite R, and the above
description accounts qualitatively for a number of the pro-
perties of the solutions at R = 100 found by the numerical
time integrations in MS. For example, it was found that
the symmetric oscillation always occurred for small values
of 5, but that the system settled into an asymmetric os-
cillation when T was made less than about 44(5 > .56).
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When T became less than 40(% > .60) the oscillation became
aperiodic. No periodic solutions were found in the range
bo > T > 25 (.60 < 8 < .75) and the periodic solutions
which appeared for & 2 .75 were of the multiple-peaked,
or squegging, sort which cannot be predicted by the asymptotic
theory since this type of solution is not exhibited by
equation (2.3)s Of course it is not possible to be sure,
when a stable periodic solution is found, that it is the
only one that exists; and unstable periodic solutions of
the sort discussed in the preceding sections cannot be
found by the straightforward time-integration technique.

In this section we present examples of the symmetric
and asymmetric solutions at finite R in their respective
unstable ranges. By using special numerical techniques,
it is possible not only to exhibit the unstable periodic
solutions, but also to show by the application of Floquet
theory that they are indeed unstable in an infinitesimal
sense. This offers further confirmation that the "aperiodic"
behavior discovered in MS 1s indeed vacillation among
several truly unstable periodic solutions, and that the
predictions of the asymptotic theory are qualitatively
valid at large but finite R.

Our numerical procedure depends upon a relaxation
technique, in which it is demanded that the solution be a
periodic one. The problem is changed from a one-point

boundary (initial value) problem to a two-point boundary
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problem with periodic boundary conditions. Thus only
pericdic solutions can be found (and of course there 1is
no certainty that one has found all of these). The period
appears in the role of an eigenvalue.

In order to apply this procedure equation (1.1l) was
transformed into a system of three first-order equations,
and the independent variable was taken to be x = t/A, where

A is the (unknown) period. The system thus becomes (with

i = z)
a6
dy2 _
dax -3
=2 = -[hg + (T-ReRy Ny, + TV ] (3-1)

with the boundary conditions
y;(0) = yi(l) i=1, 2, 3. (3.2)

For definiteness, 1t is also necessary to fix the phase at

some point; for example, we normally take

y1(0) = 0. (3.3)

By a numerical procedure described in Appendix B we proceed
to solve the system (3.1) subject to the conditions (3.2)

and (3.3). One begins with a set of trial "solutions"
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y;(x) and a trial value of A, which may either be guessed

or taken from the solution of some previous case. In a
series of iterations the functions and the eigenvalue are
systematically corrected until the equations and conditions
are fulfilled to high accuracy. The nature of the initial
trial functions normally determines which solution, if any,
is finally obtained. With experience it becomes relatively
easy to obtain quite rapid convergence to the desired solution.
The number of iterations required varies considerably,
depending upon both the nature of the solution and the
goodness of the trial solution. Regular, nearly sinusoidal
solutions are very easily obtained, while strongly asymmetric
solutions and those with sharp peaks require many iterations
with gentle corrections.

In order that the solutions of the difference equations
may approximate as closely as possible those of the corre-
sponding differential equations, the number of mesh points
in the interval [0,1] of the independent variable was in-
creased until it was determined that the results no longer
changed when the number was further increased. It was Ffound
that 1000 points is usually a sufficient number. When this
point 1s reached, the error in the solution presumably
depends chiefly upon the accumulated roundeoff error in
the arithmetical operations. In order to keep this as small
as possible, double-precision floating-point arithmetic

was used throughout (i.e., round-off of an individual number
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occurs in the sixteenth significant decimal digit). It
wes possible to use as many as 4000 equally spaced intervals,
and in a few difficult cases it proved necessary to go to
this number in order to achieve reliable results.

Some of the results obtained with this procedure are
reproduced in Figure 9, for R = 100 and various values of
8 in the range .55 < 6 £ .74. Time integrations for all
rases of this figure are shown in MS. Figure 9a shows the
sinzle symmetric solution at & = .55, just before the bifur-
cation point. At the slightly larger value & = .60 (Figure
Ub) the asymmetric solution has appeared and it is the stable
one. Both this asymmetric solution and the symmetric one of
Pigure 9a agree with those found by time integration in MS.
As b grows the asymmetry becomes more pronounced as seen in
Figure 9c, which is the solution at 6 = .61, Jjust into the
range where the asymmetric solution has also become unstable
and aperiodicity appears in the time integrations. Continuing
through the unstable range (Figures 9d and 9e), it may be
noted that as in the asymptotic theory the flat "wings"
in the symmetric solution become more pronounced, while the
asymmetric solution gradually turns into a sharp peak fol-
lowed by a long "stillstand". The period of the latter solu-
tion increases rapidly, as predicted by the asymptotic
theory. (All the asymmetric oscillations shown here are

for B <0; of course the solutions for B >0 exist as well.)
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At 5 = .74 (T = 26) we are nearing the end of the range
where solutions exist according to the asymptotic theory,
and the predictions of that theory are becoming less reliable.
The symmetric solution (Figure 9f) is still very similar to
that of the asymptotic theory (8 2b). We were not able to
obtain the asymmetric solution for & > .71l; as the strongly-
peaked character of this solution apparent in Figure Qe
becomes still more pronounced, the first and second deri-
vatives of the solution function become very large and the
numerical computations come to be dominated by the round-
off error. Thus we cannot be sure that the asymmetric solu-
tion still exists at & = .74 for R = 100. There has also
appeared a new type of periodic solution, the double-peaked
oscillation shown at the bottom in Figure 9f. This seems
to be an extreme case of the squegging behavior seen in
MS at still lower values of T. We did not succeed in finding
other periodic solutions at & = .74, such as a 3-peaked os-
cillation or the asymmetric 2-peaked solution found at
T = 25 (see the lowest curve in Figure 3 of MS), but it is
quite possible that they exist. In any case it appears that
there are no stable periodic solutions at & = .74, as shown
by the extensive time integrations previously reported (see
Figure 4 of MS).

We succeeded in finding single-peaked symmetric os-
cillations up to & = .T48. For larger values of b no single-

peaked periodic solutions were ever found, in good agreement
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with our expectations on the basis of the asymptotic theory.
The single-peaked symmetric solution at & = .748 and R = 100
is shown in Figure 6, contrasted with that calculated from
the asymptotic theory. The solution at R = 100 has a period
about 5% greater than that of the corresponding asymptotic
solution and its shape is also somewhat different. The
maximum occurs less than one-quarter period after the zero
and there is a tendency toward a "stillstand" on the falling
part of the curve. The nature of the solutions at.a = 748
is discussed in more detail below (8 3c.)

The periods of the symmetric and asymmetric solutions
at R = 100 are campared in Figure 5 with those computed from
the asymptotic theory. A study of this figure reveals the
following points. The period of the symmetric solution agrees
very well with that predicted throughout the entire range,
differing slightly only when & becomes very close to .75,
as noted in the preceding paragraph. The point of bifurca-
tion occurs at a very slightly larger Value of & (6 =.566
as compared with b ~ .561 in the asymptotic theory); Just
above the bifurcation the period of the asymmetric solution
at R = 100 is slightly lower than the asymptotic value,
but it has become larger by the time 5 = .625 (the numerical
asymptotic calculations were not carried beyond this point).
In Figure 5 the period PASM given by the approximate formula

(2.36) is also shown. The periods at R = 100 are consistently
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higher than PASM' In the range .62 < & < .70, the period
of the asymmetric solution at R = 100 may be closely ap-
proximated by the empirical formula 1/P = .495(.738 - b)

as compared with (2.36) which gives l/PAS = .468(.750 - B).

M
At & = .71, the highest value for which we were able to
compute the asymmetric solution, the period appears to be
increasing even more rapidly, possibly indicating that the
asymmetric solution disappears at a value of ® somewhat

below .75. However the solution at & = .71 was obtained

only with some difficulty and the computed period may not

be reliable.

The double-peaked solution on the right in Figure 9f
was found in the range .73 < & < .75 . The periods of this
solution are also indicated in Figure 5.

In addition to the periods, the quantities E¥ and B¥*
were evaluated for the periodic solutions at R = 100, allowing
a comparison with the T curves of the asymptotic solution
shown in Figure 7. For the symmetric solutions the dependence
of E*¥ on b given by Equation (2.25) was very closely repro-
duced by the solutions at R = 100. Furthermore the segment
QP of the T curve for the asymmetric branch agrees very well
with that found at R = 100. (For reasons indicated in 8 2d
we do not have numerical computations of the asymptotic
solution along PO; the portion of this segment near O, where
the approximate analytic treatment of Appendix A is applicable,
is not accessible to our periodic numerical computations, as

discussed earlier in this section.)
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3b. Stability of the periodic soiutions.

There is yet another point at which the numerical
calculations can be compared with the theory; namely, we
can investigate numerically the stability of the periodic
solutions that have been found. This is accomplished by
the application of Floquet theory (STOKER 1950, p. 193 ff.)

The problem investigated in this theory is whether,

a periodic solution of a non-linear equation having been

found, a small perturbation of this solution will remain

bounded. Assume that we have found a periodic solution
¥y (X

[: Yo §x§ :]of the system (3.1) with period A. Consider
y3 \X

now a vector differing only slightly from the above solution:

[ vy + wl] .
y5 + w5 | where |w; (x)| << |y; (x)|. Then it is found
Y3 + w3

that upon neglecting terms of order wi2 and higher, the

W, must satisfy a set of 3 linear equations
i

dwy
___.dx = flJ (X) WJ- (X) 1,0 = 1:2:3 (3‘4)
with periodic coefficients: fij (x +A) = fij (x).

It is possible to find a normal fundamental set of

solutions w? (x) of (3.4), and all possible solutions of this

linear system can be expressed as linear combinations of the

o
w} (x). The solution [y%-J of (3.1) is said to be stable if
Y3

all solutions wj(x) of (3.4) remain bounded as x = « which
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will be true if and only if all the nommal solutions wg are

bounded.

Now it is shown in Floquet theory that all the normal

solutions w? (x) can be expressed in the form

n a;X
wy (x) =e’1 of (x)

where the m? (x) are periodic functions of x with period A

and a; is given by

The (in general complex) quantities o; are the Floquet
multipliers and are the eigenvalues of the Floquet matrix
A. This matrix is easily evaluated for any given periodic
solution; indeed it is closely related to certain matrices
which occur naturally in our iteration scheme to find the
periodic solution and, once the scheme has converged, the
matrix A is available with little further computation. The
way in which A is obtained is discussed in detail in
Appendix B.

y X
It is now clear that the solution [:y% §x§—\ is stable
Y3 X

only if the real parts of all the ai are non-positive, for

in that case all solutions of (3.4) will be bounded. Hence,
we must evaluate the eigenvalues o of A, and we shall expect

the corresponding periodic solution to be stable only if
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lo;] = 1 for all o,- Since it can be shown that one of the
eigenvalues must always be equal to unity, it is the other

two which must be determined. 1In practice, we solve numerically
the cubic characteristic equation ||A - oL|| = 0, and verify
that one of the roots is always equal to unity as a crude

check on our procedure.

-1

In Figure 10 the quantity a = A" 1n | ¢

nax |, where

Onax is the Floquet multiplier having the largest absolute
value, is plotted as a function of & for the symmetric and
asymmetric solutions at R = 100. It is seen that the
symmetric solution is stable (a < O) for values of & below
the point of bifurcation. For & R .556, the symmetric
solution is unstable and the asymmetric solution is now the
stable one. This solution remains stable up to & a~ .606,
after which it too becomes unstable. This is in excellent
agreement with the results of the time integrations at R = 100
and also agrees satisfactorily with the predictions of the
asymptotic theory.

In part of the stable range of the asymmetric solution,
.589 S & S .604, the Floquet multipliers are complex, and in
this region a is always equal to -0.5. This region is indicated
by the dashed part of the curve in‘Figure 10. The curve corre-
sponding to the asymmetric solution in Figure 10 extends only

to & ~ .64, although the solution was followed to & = .71.
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This is because the Floquet matrix becomes very ill-conditiohed
at the larger values of 6, and its eigenvalues can no longer

be reliably determined numerically, even though the solution
found fulfils the difference equations to a sufficient

degree of precision.

The quantity a for the double-peaked solution (Figure 9r)
whose period is plotted in Figure 5 is also shown in Figure 10.
This solution is never stable throughout the‘range of its
existence, although it is similar, but not identical, to
another double-peaked solution which is stable in a small
range (see 83c). Finally, it will be remarked that the
symmetric solution again appears to become stable for & > .T45.
This unexpected behavior is also discussed in the following

section.
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‘3c. Some properties of the solutions near & = 3/4,

It was noted from Figure 10 that the single-peaked
symmetric solution at R = 100 becomes stable when & = .T455.
This was verified by a time integration at & = .748, a portion
of which is shown in Figure 1lla. Howeverbthis is not the
only stable solution; with different initial conditions the
apparently stable double-peaked solution of Figure 1l1lb was
also found. This is the periodic solution found by time
integration at & = .750 and reproduced in Figure 3 of MS.

The solution curve is asymmetric, the peaks above the axis
being higher than those below. There is also a tendency
toward a "stillstand" before crossing the axis from above,
but not from below.

The symmetric double-peaked solution of Figure 9f also
exists at & = .748 and is shown in Figure 1llc. Its period
is slightly less than that of the solution in Figure 1lb,
and it is, according to the Floguet multipliers, unstable.

It was verified that when a time integration is begun with
initial conditions corresponding to the solution of Figure llc,
the oscillation starts off looking like this solution and

then settles gradually into the stable solution of Figure 11b.
We did not succeed in finding the asymmetric double-peaked
solution by the numerical method of 8 e becamse of the
proximity of the more easily found symmetric double-peaked

solution.
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APPENDIX A: Approximate Solution near 0

Let s,, s,., s,, s, be the roots in ascending order

of the quartic

_14_i2 g = F%* =
12s > s?® + B*s E 0 (ar.1)

These roots are the points in which the energy curve cuts
the s axis and in the crescent shaped region OAC of
Figure 7, they are all real. The branch which intersects
the s axis at s, and s, has s > 0 at every point, so
that if we are seeking solutions which make s =0 , we must

take our averages on the branch which intersects the s

axis at s, and s, . Thus

$

oH 5 &2 S ds
aB* s, (E*_ Bis +isl_'-lisll')./2

Standard transformations show that

k()
an _ __ 4vEs”s, [ u-«lsntw)
28" VS350~ S,) o (1-o*sn?u) g

(A.3)
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where

2 1 =3
d B (ss'sl)

- 3 2
(a.4)

and

‘ﬁz": (53‘31)‘31"50)
(53 -5,)(s;,-5,) .

The standard notation for elliptic functions and integrals

is used throughout.
When E* and B* are small we can solve (A.l) approxi-

mately to find

S = - ¢6 + B*

s, = B¥* - JB*2 - 2E*

(A.5)
s, = B* + JB*2 - 2E*
S, = V6 + B*
The roots s, and s, coincide when B*2® = 2E* , so this

is the approximate equation of OA when E* and B* are
small. Our approximation is valid in the region AOB* so

that B*2 > 2E* and the roots are all real.
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We can now easily find approximate expressions for dz

2 .
*} and ", using (A.5). 1In particular

so that, since B* and E* are small the complementary

'
modulus 4 , defined by

'
2
ko=\i-4
is small. In this circumstance the integral in (A.3) can be

evaluated approximately (Byrd and Friedman 1954, p. 301l) and

we find

L3 a? - '2
[Earmean < (435) 1ogf) - (SN 1wV
421 log () + 0%

Substitution of the approximate expressions for -(t q'1 and
| S . .

&' gives equation (2.33) of the text. The integrals for H

and OM/2E™ are rather easier to estimate and we will not

give the details of the algebra leading to (2.36).
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Appendix B. A numerical method to obtain periodic solutions

of nonlinear ordinary differential equations.

In this Appendix we describe in detail the numerical
procedure used to obtain the periodic solutions discussed
in 8 3. The method is based on one which is widely used in
stellar structure calculations (L. G. Henyey, J. E. Forbes,

and N. L. Gould, Astrophys. J. 139, 306 [1964]) and has been

put into the form described here with the help of Dr. L. B. Lucy.

Consider the Nth order system

dgi _ o .
d_f_ - 3‘(%") Ly = ,12) Tttty N. (B.1)

We are seeking periodic solutions of this system, namely a

set of functions y (t) having the property
i

Yi (t+A) = Y:(t) (B.2)

for some real N and all t. As it is inconvenient in numerical
work to have a variable interval for the independent variable,
we change to a new independent variable x = t/A and then
confine our attention to a single period: 0 < x < 1. Our

system is now
dy: .
d-yx- = £((33;X) % B h2, ettt N (B.3)

and the required property (B.2) is expressed as a set of

boundary conditions:

55



Y V= o0) 02,5 LN (B.4)

The problem now has the character of a two-point boundary
problem, with the period A as an eigenvalue. The condi-
tions (B.4), however, do not suffice to determine a solution
of (B.3), since the phase is not fixed; i.e., any solution
can be arbitrarily translated in x and remains a solution.
Thus we need some (quite arbitrary) condition to define the

phase of one particular v Normally we take

Yy (0) = C = const. (B.5)

It is important only that the value of the constant lie
within the (normally bounded) range assumed by y.

In order to construct difference equations, we divide
the range [0,1] into M intervals, not necessarily of equal
length. Thus ilhere will be M + 1 mesh points, labeled xl,
X5s ......xM, XM+1’ with xl = 0 and XM+1 = 1. The interval
between two mesh points is then AT = X+l = %pe Vilues
of the Yy etc. at x = X will be denoted by a superscript,
thus: yi(xm) = y?. Using a simple first-order difference
scheme, the equations (B.3) between points m and m+l become

‘Jm”- 'd"h
= -z'-[f;(s;"",- NWERACYY) (B.6)

and conditions (B.4) and (B.5) become
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and

Yy, = C (B.8)

respectively.

Our approach will be to find a method of repeatedly
correcting a given set of trial functions until we obtain
a set which satisfies the equation. To this end, let us
assume a set of trial functions ¥; (x) having values §? at
the mesh points and a trial eigenvalue N (obtained either
from an initial guess or Trom the previous iteration). The
?? do not satisfy the equations (B.6), but we now seek an

improved set

A= X+ &)
Then, with the notations
5= 504550 f.=5.(8753)
$iy = 28:/24, a&-y-’a&.-/ax

we write

m

£ §£ + '-&3 ‘;‘3" SETNE D T s -

(summation on repeated lower indices, not on repeated upper

indices). The difference equations (B.6) are now linearized
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by inserting the above expansions and neglecting terms of

order Byi and 6%2. The result, after some rearrangement, is

(85 -5 8 845" *(2dy * 5 8) 847
 (8.9)

f%(-f‘:‘“-ff‘x)éx - Axm(‘jmu m ""(&m’l -,,..) J

/

and the conditions (B.7) and (B.8) become
i Mol -MH
53; - (‘j ) 0

631+<§I-c)=0.

(B.10)

Between any two mesh points, then, we must compute the

N x N matrices
(N L S ™ [_' g -
Qc* [ 2 §"'3 Ax"";‘i'] ) bt* = 3 f“’ 4AX"" S"]
and the 1 x N column vectors B.11)

C=3(85 +13), €= f(58)am (=)

With these definitions, (B.9) becomes
aiy 347" + by, J‘J: +CT3N v &7 =0, (B.12)

-1 m m

Defining now the inverse a 13 of ai,j s viz.,
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-] ™ m
a’, Qg =38y (B.13)

and the guantities

-,M - mn _'m ™

m - m ™ m ”m
B‘:*' a i$ bﬂf) Ci=—a ik c‘k, E‘. '-a‘fa e& ) (3.14)

one obtains

m 4|

”m m L] ”n =
53( = B‘* 5“4, + C‘- J% + E" . (B'l’)
We now seek a similar relation between the corrections

at any given point and those at the {irst boundary point,

thus:
S m+| - 3 1 m m
y‘ gptt ‘j* + Yi 5) + 8" . (B.16)
The ﬁi? s y? s and e? can be found because, clearly,
4 - B‘i 1 b | 1 1
(51'3 - 4 ) Y‘- > C; ) Ei = E‘- (B.17)

and, combining (B.15) and (B.16) we obtain a set of recurrence

relations:

(siﬂ; = Bc’h p;:;
y© = 5;‘! y&‘““ ¢ C } (B.18)

M

€T = B, €5 *+E;
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Beginning with (B.17) and applying (B.18) repeatedly, we
finally arrive at a relation between the corrections at

the two ends of the interval [0,1]:

Ml

by, =f3i2 5’:]: + %’;MJX + 6? (B.19)

These constlitute N linear equations relating the 2N + 1
quantities bybf-l, 6y;, 6A. In addition, we have the N + 1
relations (B.10) and upon eliminating the 6y¥+1 from (B.19)
with the first of (B.10), we have N + 1 equations in N + 1
unknowns, which we then solve for the ﬁyi and ®A. Applying
(B.15) successively at each mesh point, we then obtain all
the corrections ﬁy? at each point. The corrections are added
to the y? and A and the whole procedure is repeated.

It may be mentioned that in difficult cases, and especially
when the trial function is poor, it often proves expedient
to apply not the full correction, but only a certain fraction,

v , of it. Thus the new functions would be

m

9. = 97 + »-547 oc<d<t

After a number of iterations v may be increased, and when
the "solution" becomes so good that the linear approximation
(B.9) is quite good, the convergence is speeded by setting

v = 1. In the present calculations it was found that, when

convergence was obtained, the largest relative correction
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as a typical value.

When the procedure has converged, the yi(x) are periodic
functions satisfying (B.6). If now we repeat the process
once more, the Syi are just the w'(x) of the Floquet theory

i

(cf. Eg. 3.4), and the Floquet matrix A is evidently just

A= (Py),

the matrix already calculated for use in Eq. (B.19).
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Figure 1. The aperiodicity strip.
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Figure 2. Time integration at R = 1000 and T = 350 showing
the irregular modulation.
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Figure 3. Time integration at R = 10,000 and T = 3500. There
are more oscillations in each cycle of the irregular modulation
than in Figure 2.
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Figure 5. The periods of the symmetric, asymmetric and two-
peaked (symmetric) solutions. The period is in dynamical units
of time. The solid curves give the periods calculated by the
method of averaging; the dashed curves give periods at R = 100
from the numerical relaxation solutions. The values of P M
from the asymptotic theory valid as & - 3/4- are shown Fof
comparison.
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Figure 8a. Time integration of (2.8) for & = 0.6.
point is stable and the solution is spiralling in.
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Figure 8b. Time integration of (2.8) for & = 0.625. The
singular point is an unstable spiral and the solution enters

a limit cycle. The limit cycle crosses OA from left to right
leading to the sudden jump in amplitude of the periodic sclution.
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Figure 10. The quantity a = A"~ 1n lOMAXI’ where Oyax 1S

the Floquet multiplier of greatest modulus, for the symmetric,
asymmetric and 2-peaked (symmetric) periodic solutions at

R = 100. Negative values of a mean that the corresponding
periodic solution is stable; positive values, unstable. The
dashed portion of the curve for the asymmetric solution shows
the range in which the Floquet multipliers are complex.
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Figure 11. Several periodic solutions found at R = 100,

6 = .748. The single-peaked solution (a) and the asymmetric
double-peaked solution (b) are stable. The symmetric double-
peaked solution (c) is unstable. The time axis is labeled
in dynamical units.



